Pengertian Fluida .
adalah sub-himpunan dari fasebenda, termasuk cairan, gas, plasma, dan padat plastik.
Fluida memilik sifat tidak menolak terhadap perubahan bentuk dan kemampuan untuk mengalir (atau umumnya kemampuannya untuk mengambil bentuk dari wadah mereka). Sifat ini biasanya dikarenakan sebuah fungsi dari ketidakmampuan mereka mengadakan tegangan geser(shear stress) dalam ekuilibrium statik. Konsekuensi dari sifat ini adalah hukum Pascal yang menekankan pentingnya tekanan dalam mengkarakterisasi bentuk fluid. Dapat disimpulkan bahwa fluida adalah zat atau entitas yang terdeformasi secara berkesinambungan apabila diberi tegangan geser walau sekecil apapun tegangan geser itu.
Mekanika fluida
adalah subdisiplin dari mekanika kontinum yang mempelajari fluida (yang dapat berupa cairan dan gas). Mekanika fluida dapat dibagi menjadi fluida statik dan fluida dinamik. Fluida statis mempelajari fluida pada keadaan diam sementara fluida dinamis mempelajari fluida yang bergerak.
Dinamika fluida
adalah subdisiplin dari mekanika fluida yang mempelajari fluida bergerak. Fluida terutama cairan dan gas. Penyelsaian dari masalah dinamika fluida biasanya melibatkan perhitungan banyak properti dari fluida, seperti kecepatan, tekanan, kepadatan, dan suhu, sebagai fungsi ruang dan waktu. Disiplini ini memiliki beberapa subdisiplin termasuk aerodinamika (penelitian gas) dan hidrodinamika (penelitian cairan). Dinamika fluida memliki aplikasi yang luas. Contohnya, ia digunakan dalam menghitung gaya dan moment pada pesawat, mass flow rate dari petroleum dalam jalur pipa, dan perkiraan pola cuaca, dan bahkan teknik lalu lintas, di mana lalu lintas diperlakukan sebagai fluid yang berkelanjutan. Dinamika fluida menawarkan struktur matematika yang membawahi disiplin praktis tersebut yang juga seringkali memerlukan hukum empirik dan semi-empirik, diturunkan dari pengukuran arus, untuk menyelesaikan masalah praktikal.
Prinsip Pascal
Sebagaimana telah kita pelajari pada pokok bahasan Tekanan pada Fluida, setiap fluida selalu memberikan tekanan pada semua benda yang bersentuhan dengannya. Air yang kita masukan ke dalam gelas akan memberikan tekanan pada dinding gelas. Demikian juga apabila kita mandi dalam kolam renang atau air laut, air kolam atau air laut tersebut juga memberikan tekanan pada seluruh tubuh kita. Nah, tekanan total air pada kedalaman tertentu, misalnya tekanan air laut pada kedalaman 200 meter merupakan jumlah tekanan atmosfir yang menekan permukaan air laut dan “tekanan terukur” pada kedalaman 200 meter. Jadi selain lapisan bagian atas air menekan lapisan air yang ada di bawahnya, terdapat juga atmosfir alias udara yang menekan permukaan air laut tersebut.
Tekanan yang ditimbulkan oleh lapisan fluida yang ada di atas bisa kita katakan “tekanan dalam” karena tekanan itu sendiri berasal dari dalam fluida sedangkan tekanan atmosfir bisa kita katakan “tekanan luar” karena atmosfir terpisah dari fluida. Tekanan atmosfir yang dalam kasus ini merupakan tekanan luar, bekerja pada seluruh permukaan fluida dan tekanan tersebut disalurkan pada seluruh bagian fluida. Karenanya tekanan total fluida pada kedalaman tertentu selain disebabkan oleh tekanan lapisan fluida pada bagian atas, juga dipengaruhi oleh tekanan luar (untuk kasus di atas adalah tekanan atmosfir).
Untuk semakin memahami penjelasan ini, mari kita tinjau zat cair yang berada dalam suatu wadah. Tekanan zat cair pada dasar wadah tentu saja lebih besar dari tekanan zat cair pada bagian di atasnya (ingat kembali pembahasan mengenai Tekanan Pada Fluida). Semakin ke bawah, semakin besar tekanan zat cair tersebut, sebaliknya semakin mendekati permukaan atas wadah, semakin kecil tekanan zat cair. Besarnya tekanan sebanding dengan pgh (p = massa jenis, g = percepatan gravitasi dan h = ketinggian/kedalaman). Pada setiap titik pada kedalaman yang sama, besarnya tekanan sama. Hal ini berlaku untuk semua zat cair dalam wadah apapun dan tidak bergantung pada bentuk wadah tersebut. Apabila kita tambahkan tekanan luar, misalnya dengan menekan permukaan zat cair tersebut, pertambahan tekanan dalam zat cair adalah sama di mana-mana. Jadi apabila diberikan tekanan luar, setiap bagian zat cair mendapat “jatah” tekanan yang sama. Karenanya besar tekanan selalu sama di setiap titik pada kedalaman yang sama. Ini merupakan Prinsip Pascal, dicetuskan dan dinamakan sesuai dengan nama pencetusnya, Om Blaise Pascal (1623-1662). Om Pascal merupakan filsuf dan ilmuwan Perancis, bukan Indonesia. Kapan neh dari Indonesia, dirimu-kah ?
Prinsip Pascal menyatakan bahwa tekanan yang diberikan pada cairan dalam suatu tempat tertutup akan diteruskan sama besar ke setiap bagian fluida dan dinding wadah
Secara matematis bisa ditulis sebagai berikut :
P = tekanan, F = Gaya dan A = Luas permukaan. Kata “masuk” mewakili “tekanan yang diberikan”, sedangkan kata “keluar” mewakili “tekanan yang diteruskan”.
Penerapan Prinsip Pascal
Berpedoman pada prinsip Om Pascal ini, manusia telah menghasilkan beberapa alat, baik yang sederhana maupun canggih untuk membantu mempermudah kehidupan. Beberapa di antaranya adalah Dongkrak Hidrolik, Lift Hidrolik, Rem Hidrolik dll…
Dongkrak alias Lift Hidrolik
Cara kerja dongkrak alias lift hidrolik ditunjukkan pada gambar di bawah.
Dongkrak hidrolik terdiri dari sebuah bejana yang memiliki dua permukaan. Pada kedua permukaan bejana terdapat penghisap (piston), di mana luas permukaan piston di sebelah kiri lebih kecil dari luas permukaan piston di sebelah kanan. Luas permukaan piston disesuaikan dengan luas permukaan bejana. Bejana diisi cairan, seperti pelumas (oli dll).
Apabila piston yang luas permukaannya kecil ditekan ke bawah, maka setiap bagian cairan juga ikut tertekan. Besarnya tekanan yang diberikan oleh piston yang permukaannya kecil (gambar kiri) diteruskan ke seluruh bagian cairan. Akibatnya, cairan menekan piston yang luas permukaannya lebih besar (gambar kanan) hingga piston terdorong ke atas. Luas permukaan piston yang ditekan kecil, sehingga gaya yang diperlukan untuk menekan cairan juga kecil. Tapi karena tekanan (Tekanan = gaya / satuan luas) diteruskan seluruh bagian cairan, maka gaya yang kecil tadi berubah menjadi sangat besar ketika cairan menekan piston di sebelah kanan yang luas permukaannya besar. Jarang sekali orang memberikan gaya masuk pada piston yang luas permukaannya besar, karena tidak menguntungkan. Pada bagian atas piston yang luas permukaannya besar biasanya diletakan benda atau begian benda yang mau diangkat (misalnya mobil dkk)
Ingat bahwa luas permukaan piston sangat kecil sehingga gaya yang kita berikan juga kecil. Walaupun demikian gaya masukan yang kecil tersebut bisa berubah menjadi gaya keluaran yang sangat besar bila luas permukaan keluaran sangat besar. Jika dongkrak hidrolik dirancang untuk mengangkat mobil yang massanya sangat berat maka perancang perlu memperhatikan besar gaya berat mobil tersebut dan besarnya gaya keluaran yang dihasilkan oleh dongkrak. Semakin besar gaya berat mobil yang diangkat maka semakin besar luas permukaan keluaran dari dongkrak hidrolik. Minimal gaya keluaran yang dihasilkan oleh dongkrak hidrolis lebih besar/sama dengan gaya berat benda yang diangkat.
Bagaimana Pesawat Udara Bisa Terbang
Secara kodrati manusia diciptakan untuk hidup di darat. Manusia tidak memiliki alat gerak yang bisa digunakan untuk terbang. Namun, burung-burung yang dapat terbang bebas di angkasa telah memberi inspirasi bagi manusia untuk menjelajah lebih jauh dari habitatnya. Kemampuan untuk terbang bebas di angkasa menjadi suatu simbol kebebasan dan lepas dari belenggu gravitasi.
Pada awalnya manusia menganggap bahwa untuk bisa terbang maka kita harus melakukannya sebagaimana burung terbang. Dan satu-satunya cara adalah dengan mengepakkan sayap seperti halnya burung. Atas dasar itu lah kemudian bermunculan para peloncat-peloncat menara dengan desain sayap yang mereka ciptakan sendiri. Mereka tidak hanya satu, tapi puluhan, dengan satu mimpi yang sama: terbang. Namun malang, tak ada satupun yang berhasil. Bahkan lebih banyak yang justru menemui ajal.
Orang sekaliber Leonardo da Vinci pun ikut terbawa oleh euforia impian terbang. Da Vinci pernah manciptakan suatu desain mesin terbang yang disebut ornitopter. Meskipun bukan alat yang berhasil membuat manusia dapat terbang, namun saya sangat kagum dengan desain ini. Berbeda dengan para peloncat menara, da Vinci tidak lah bodoh. Sebelum desainnya direalisasikan, ia segera meyadari bahwa tidak mungkin manusia -dengan tenaga yang dimilikinya- bisa melakukan pengendalian, mengepakkan sayap, dan navigasi dalam waktu bersamaan. Banyak waktu yang ia curahkan untuk sekedar mempelajari bagaimana burung-burung terbang.
Suatu pernyataan da Vinci yang begitu visioner adalah metode separasi. Sekitar 1500 tahun yang lalu da Vinci telah mengemukakan bahwa untuk bisa terbang cukuplah dilakukan dengan sayap tetap dan memberinya gaya dorong. Hal ini didasari dari hasil pengamatannya dari teknik burung untuk terbang. Menurutnya, sayap burung terdiri dari dua bagian yang memiliki fungsi masing-masing. Bagian pangkal sayap burung yang relatif tetap (fixed) berfungsi membangkitkan gaya angkat. Sedangkan bagian ujung sayap burung berfungsi untuk mengepak dan membangkitkan gaya dorong. Separasi gaya menjadi gaya angkat dan gaya dorong inilah yang sampai sekarang dipakai untuk menciptakan mesin terbang.
Lalu bagaimana pesawat udara dapat terbang? Adalah suatu yang salah jika kita berfikir bahwa mesin (engine) lah menyebabkan pesawat dapat terbang. Pada dasarnya, sayap lah yang memberi gaya angkat yang dibutuhkan untuk terbang, sedangkan engine hanya memberi gaya dorong (thrust) untuk bengerak maju. Jadi, kesimpulan mudahnya adalah bahwa pesawat udara (bukan pesawat antarikasa) dapat terbang karena memiliki sayap.
Pertanyaan selanjutnya, bagaimana gaya angkat (lift) dapat terbangkit di sayap? Secara mudah dapat dijelaskan bahwa gaya angkat terbangkitkan karena ada perbedaan tekanan di permukaan atas dan permukaan bawah sayap. Bentuk airfoil sayap diciptakan sedemikian rupa agar tercipta karakteristik aliran yang sesuai dengan keinginan. Singkatnya, gaya angkat akan ada jika tekanan dibawah permukaan sayap lebih tinggi dari tekanan diatas permukaan sayap. Perbedaan tekanan ini dapat terjadi karena perbedaan kecepatan aliran udara diatas dan dibawah permukaan sayap. Sesuai hukum Bernoulli semakin cepat kecepatan aliran maka tekanannya makin rendah. Besarnya gaya angkat yang dibangkitkan berbanding lurus dengan Luas permukaan sayap, kerapatan udara, kuadrat kecepatan, dan koefisien gaya angkat.
Jadi, untuk pesawat udara, engine berfungsi memberikan gaya dorong agar pesawat dapat bergerak maju. Akibat gerak maju pesawat maka terjadi gerakan relatif udara di permukaan sayap. Dengan bentuk geometri airfoil tertentu dan sudut serang sayap (angel of attack) tertentu maka akan menghasilkan suatu karakteristik aliran udara dipermukaan sayap yang kemudian akan menciptakan beda tekanan dipermukaan atas dan permukaan bawah sayap yang kemudian membangkitkan gaya angkat yang dibutuhkan untuk terbang.
Bagaimana sayap dapat mengangkat pesawat?
Kalau kita perhatikan, bentuk dasar sebuah sayap pesawat terbang adalah seperti yang terlihat di gambar 1. Perhatikan bahwa dasar sayap adalah datar. Sedangkan permukaan atas sayap melengkung dengan sudut tertentu. Bentuk ini yang menyebabkan perbedaan tekanan antara bagian atas dan bagian bawah sayap mendorong pesawat ke atas.
penampang sayap
Ini adalah aplikasi dari ide Bernoulli (1700-1782). Memang kalau kita mempelajari aerodinamika lebih dalam, teori ini mungkin tidak berlaku lagi pada kecepatan tertentu, tapi ide Bernoulli masih merupakan prinsip dasar dari cara kerja sebuah sayap pesawat.
Seorang penerbang tidak memerlukan aplikasi rumit dari persamaan Bernoulli, tapi dapat memahami cara kerja pesawat dengan memahami hukum fisika dari persamaan tersebut.
Bernoulli, dari namanya pasti dia bukan dari kampung halaman saya di Cisarua, mengatakan bahwa, dalam sebuah streamline perbandingan antara tekanan fluida (udara dalam hal ini juga adalah fluida), dan kecepatannya adalah konstan. Pusing? Saya juga pusing.
Prinsip Bernoulli
Jadi dalam gambar kedua, terlihat bahwa di dalam pipa di atas titik B dengan kecepatan yang lebih rendah maka tekanannya akan lebih tinggi.
Sedangkan di atas titik A, karena pipa yang dilewati fluida lebih sempit maka kecepatan menjadi lebih tinggi dan ternyata tekanannya menjadi lebih rendah. Jika anda membutuhkan rumus teori ini dapat dicari di Internet dengan mudah dengan kata kunci Bernoulli.
Aplikasi pada sayap pesawat
Dengan teori di atas, maka sayap pesawat di buat seperti gambar di bawah ini.
Udara akan mengalir melewati bagian atas sayap dan bagian bawah sayap. Sebenarnya bukan udara yang mengalir melewati sayap pesawat, tapi sayap pesawatlah yang maju “menembus” udara. Tapi kita akan mengasumsikan aliran ini dengan gambar sayap yang diam.
Dengan bentuk yang melengkung di atas, maka aliran udara di atas sayap membutuhkan jarak yang lebih panjang dan membuatnya “mengalir” lebih cepat dibandingkan dengan aliran udara di bawah sayap pesawat.
Karena kecepatan udara yang lebih cepat di atas sayap, maka tekanannya akan lebih rendah dibandingkan dengan tekanan udara yang “mengalir” di bawah sayap. Tekanan di bawah sayap yang lebih besar akan “mengangkat” sayap pesawat dan disebut GAYA ANGKAT / LIFT.
Karena itu, kecepatan pesawat harus dijaga sesuai dengan rancangannya. Jika kecepatannya turun maka lift nya akan berkurang dan pesawat akan jatuh, dalam ilmu penerbangan disebut STALL. Kecepatan minimum ini disebut Stall Speed.
Jika kecepatan pesawat melebihi rancangannya maka juga akan terjadi stall yang dinamakan HIGH SPEED STALL.
Tapi perlu juga diingat, bahwa hukum ini bukanlah satu-satunya hukum yang bekerja untuk menghasilkan lift. Hukum Bernoulli tidak bisa menjelaskan kenapa pesawat kertas yang kita buat bisa terbang. Artikel berikut akan menjelaskan hukum lain yang terlibat:
Prinsip dasar dari cara pesawat terbang untuk mengudara sama untuk semua pesawat, baik pesawat capung maupun pesawat super jumbo seperti Airbus A380.
Yang mempengaruhi pesawat unutk terbang adalah gaya - gaya aerodinamis yang mengenainya yaitu, gaya angkat (lift), gaya hambat (drag), gaya berat (grafitasi), dan gaya dorong (trust). Untuk lebih jelasnya klik gambar disamping 2 kali.
Gaya dorong pesawat kedepan didapat dari baling-baling yang berputar pada ujung pesawat (lihat gambar). Sedangkan gaya hambat merupakan pergesekan pesawat udara dengan angin. Karena pesawat udara mempunyai massa, maka gaya grafitasi akan membawa pesawat kebawah, untuk itulah gaya angkat diperlukan. Gaya angkat dihasilkan dari sayap pesawat udara.
Sayap pesawat udara ini yang memegang peranan kunci untuk mengkat badan pesawat. Penampang sayap ini biasanya disebut " aerofoil" Selama penerbangan udara mengalir ke atas dan bawah sayap. Udara yang megalir diatas sayap lebih cepat dari udara yang mengalir dibawah sayap, sehingga tekanan udara diatas pesawat lebih rendah.
Disaat yang bersamaan udara dibawah sayap dibelokan kebawah, sehingga terjadi gaya angkat (udara yang terdorong kebawah akan mendorong sayap keatas- gaya aksi reaksi).
Gaya dorong terhadap sayap dan tekanan udara yang rendah diatas sayap inilah yang di butuhkan untuk pesawat terbang di udara.
Prinsip Kerja Rem Hidrolik
Pada tulisan sebelumnya (BS-01), kita bisa melihat bagian-bagian utama system rem dari sebuah kendaraan penumpang (Sedan). Bagian-bagian utama tersebut antara lain; (1) Brake Pedal, (2) Brake Booster, (3) Master Cylinder, (4) Brake Lines, (5) Disc Brake Assemblies, dan (6) Drum Brake Assemblies. Selain itu, kita juga melihat adanya sebuah system pengereman mekanikal, yaitu Emergency atau Parking Brake.
Sistem kerja hidrolik pada sebuah sistem pengungkit.
Dalam tulisan BS-02 ini, kita akan membahas prinsip kerja dari system rem hidrolik pada mobil. Prinsip kerja rem hidrolik didasarkan oleh hukum pascal, yang mana memungkinkan kita bisa memberikan gaya yang kecil untuk dapat mengangkat gaya atau beban yang jauh lebih besar, tentu dengan perbandingan luas penampangnya.
Prinsip kerja rem hidrolik pada mobil.
Gaya kaki dari sopir saat menginjak brake pedal diteruskan oleh fluida melalui master cylinder, kemudian diteruskan ke manifold yang biasanya sekaligus berfungsi sebagai proportional valve ke tiap-tiap roda. Pada roda yang menggunakan disc brake assembly, diteruskan ke caliper untuk mendorong piston, sedangkan jika roda menggunakan drum brake assembly, diteruskan ke wheel cylinder untuk mendorong pistonnya juga. Piston pada disc brake assembly akan menekan brake pads atau material frictions (kampas) sehingga putaran Brake disc (cakram) dapat ditahan karena adanya cengkraman tersebut. Cengkraman ini menghasilkan gesekan dan panas pada material.
Proses pengereman pada disc brake assembly, dan
(B)-Proses pengereman pada drum brake assembly.
Sedangkan pada drum brake assembly, piston dalam wheel cylinder akan menekan brake shoes (sepatu rem), dalam hal ini adalah material frictions, sehingga mengenai lining surface pada bagian dalam brake drum dan kemudian putaran roda dapat dikurangi dengan adanya gaya gesekan yang terjadi. Dengan demikian, kecepatan laju kendaraan dapat dikurangi.
Pada kesempatan selanjutnya, kita akan membahas secara detail cara kerja dari masing-masing bagian utama rem sistem hidrolik.
Diposkan oleh AutoStar di 01:4
Hukum Bernoulli tentang aliran dan tekanan udara
Pesawat terbang dapat terangkat ke udara karena kelajuan udara yangmelalui sayap pesawat tersebut, berbeda dengan roket yang terangkat ke atas karena aksi-reaksi antara gas yang disemburkan roket dengan roket itu sendiri. Roket menyemburkan gas ke belakang (ke bawah), sebagai reaksinya gas mendorong roket ke atas. Jadi roket tetap dapat terangkat ke atas meskipun tidak ada udara, pesawat terbang tidak dapat terangkat jika tidak ada udara.
Penampang sayap pesawat terbang mempunyai bagian belakang yang lebih tajam dari pada bagian depan, dan sisi bagian atas yang lebih melengkung dari pada sisi bagian bawahnya. Gambar di bawah adalah bentuk penampang sayap yang disebut dengan aerofoil.
Garis arus pada sisi bagaian atas lebih rapat daripada sisi bagian bawahnya, yang berarti laju aliran udara pada sisi bagian atas pesawat (v2) lebih besar daripada sisi bagian bawah sayap (v1). Sesuai dengan asas Bernoulli
Tekanan pada sisi bagian atas pesawat (p2) lebih kecil daripada sisi bagian bawah pesawat (p1) karena laju udara lebih besar. Beda tekanan p1 – p2 menghasilkan gaya angkat sebesar: , dengan A merupakan luas penampang total sayap jika nilai p1 – p2 dari persamaan gaya angkat diperoleh , , dengan ρ adalah massa jenis udara.
Dua Bersaudara Wilbur Wright dan Oliver Wright penemu pesawat terbang
Pesawat dapat terangkat keatas jika gaya angkat lebih besar daripada berat pesawat, jadi apakah suatu pesawat dapat atau tidak tergantung pada berat pesawat, kelajuan pesawat dan ukuran sayapnya. Makin besar kecepatan pesawat, makin kecepatan udara dan ini berarti bertambah besar sehingga gaya angkat Jika pesawat telah berada pada ketinggian tertentu dan pilot ingin mempertahankan ketinggiannya (melayang di udara), maka kelajuan pesawat harus diatur sedemikian rupa sehingga gaya angkat sama dengan berat pesawat
Penerapan Hukum Bernoulli untuk mendesain pesawat terbang
Pesawat terbang dirancang sedemikian rupa sehingga hambatan udaranya sekecil mungkin. Pesawat pada saat terbang akan menghadapi beberapa hambatan, diantaranya hambatan udara, hambatan karena berat badan pesawat itu sendiri, dan hambatan pada saat menabrak awan. Setelah dilakukan perhitungan dan rancangan yang akurat dan teliti, langkah selanjutnya adalah pemilihan mesin penggerak pesawat yang mampu mengangkat dan mendorong badan pesawat.
Pada dasarnya, ada empat buah gaya yang bekerja pada sebuah pesawat terbang yang sedang mengangkasa.
1. Berat pesawat yang disebabkan oleh gaya gravitasi bumi.
2. Gaya angkat yang disebabkan oleh bentuk pesawat.
3. Gaya ke depan yang disebabkan oleh gesekan udara.
4. Gaya hambatan yang disebabkan oleh gesekan udara
Jika pesawat hendak bergerak mendatar dengan suatu percepatan, maka gaya ke depan harus lebih besar daripada gaya hambatan dan gaya angkat harus sama dengan berat pesawat. Jika pesawat hendak menambah ketinggian yang tetap, maka resultan gaya mendatar dan gaya vertical harus sama dengan nol. Ini berarti bahwa gaya ke depan sama dengan gaya hambatan dan gaya angkat sama dengan berat pesawat.
Jenis-jenis mesin pesawat terbang
Pesawat terbang digerakan oleh sebuah sistem penggerak yang mampu mengangkat dan mendorong pesawat ke udara. Pemilihan sistem penggerak didasarkan pada besar kecilnya ukuran pesawat terbang. Adapun jenis-jenis mesin pesawat terbang adalah sebagai berikut:
Turbo Propeller
Pada awal-awal dioperasikannya pesawat komersial tahun 1950, sistem penggerak yang digunakan adalah turbo propeller atau yang biasa disebut dengan turboprop, yakni gabungan antara propeller (kipas) untuk menghisap udara masuk ke ruang bakar dengan turbin yang tertutup casing, sedangkan penggunaan mesin turboprop pesawat militer dimulai awal tahun 1930.
Awal dioperasikannya pesawat komersial 1950
Turbo Jet
Pengembangan sistem penggerak pesawat terbang mengalami peningkatan yang cukup berarti dengan dikembangkannya mesin turbo jet, di mana propeller yang berfungsi untuk menghisap udara digantikan dengan kompresor bertekanan tinggi yang tertutup casing mesin menyatu dengan ruang bakar dan turbin pesawat. Dari gambar di bawah terlihat bagian-bagian dari mesin turbo jet, yang terdiri dari air inlet (saluran udara), sirip compressor dan sirip stator, saluran bahan bakar (fuel in), ruang pembakaran (combuster), daun turbin dan saluran buang (exhaust).
Sistem kemudi pesawat terbang
Sistem kemudi pesawat terbang dipergunakan untuk melakukan manuver. Pada saat pesawat akan berbelok ke arah kanan maka daun kemudi digerakkan ke arah kiri, begitu juga saat pesawat akan bermanuver ke kiri, maka daun kemudi digerakkan ke arah kiri. Bagian belakang pesawat terdapat kemudi yang dirancang secara horizontal dan vertical.
Ekor Pesawat terbang untuk Manuver
Pesawat bisa terbang ke segala arah, menanti gerak kemudi pilot. Kalau kemudi diputar ke kiri, pesawat akan banking ke kiri. Demikian pula sebaliknya. Gerakan ini ditentukan bilah aileron di kedua ujung sayap utama. Lalu, jika pedal kiri atau kanan diinjak, pesawat akan bergerak maju ke kiri atau ke kanan. Dalam hal ini yang bergerak adalah bilah rudder.Posisinya di belakang sayap tegak (di ekor).
Berbeda jika gagang kemudi di tarik atau didorong. Pesawat akan menanjak atau menukik. Penentu gerakan ini adalah bilah kemudi elevator yang terletak di kedua bilah sayap ekor horizontal.
Asas Bernoulli
Gaya Angkat Pesawat
Mengapa pesawat yang terbuat dari logam yang amat berat dapat terbang di angkasa ?
Bagian atas sayap melengkung, sehingga kecepatan udara di atas sayap (v2) lebih besar daripada kecepatan udara di bawah sayap (v1) hal ini menyebabkan tekanan udara dari atas sayap (P2) lebih kecil daripada tekanan udara dari bawah sayap (P1), sehingga gaya dari bawah (F1) lebih besar daripada gaya dari atas (F2) maka timbullah gaya angkat pesawat.
Bagaimana persamaan untuk menghitung tekanan pada pesawat ?
Sayap pesawat tipis, maka h1 = h2 sehingga tekanan pada pesawat:
P2 : tekanan dari atas pesawat, satuannya Pa
P1 : tekanan dari bawah pesawat, satuannya Pa
v2 : kecepatan udara di atas pesawat, satuannya m/s
v1 : kecepatan udara di bawah pesawat, satuannya m/s
ρ : massa jenis udara, satuannya Kg/m3
Contoh :
Pada pesawat model kecepatan udara di bagian atas 50 m/s dan kecepatan di bagian bawah 40 m/s, jika massa jenis udara 1,2 Kg/m3, tekanan udara bagian atas pesawat 103000 Pa. Berapakah tekanan udara dari bawah sayap ?
Diketahui :
v2 = 50 m/s
v1 = 40 m/s
ρ = 1,2 Kg/m3
P2 = 103000 Pa
Ditanyakan : P1 = .... ?
Penyelesaian:
P1 = 103540 Pa
Jadi tekanan dari bawah sayap pesawat adalah 103540 Pa.
Tekanan , maka F = P.A
Gaya angkat pada pesawat F1 - F2 = (P1 - P2).A ata
P2 : tekanan dari atas pesawat, satuannya Pa
P1 : tekanan dari bawah pesawat, satuannya Pa
F : gaya angkat pesawat, satuannya N
F1 : gaya dari bawah pesawat, satuannya N
F2 : gaya dari atas pesawat, satuannya N
A : luas penampang, satuannya m2
ρ : massa jenis udara, satuannya Kg/m3
Tidak ada komentar:
Posting Komentar